Ergonomics of workplaces and combat algorithms for promising armored vehicles

31
In previous articles we looked at ways to increase the situational awareness of armored vehicles и the need to increase the speed of targeting weapons and reconnaissance equipment. Equally important is the provision of effective intuitive interaction of crew members with weapons, sensors and other technical systems of combat vehicles.


Pilot positions (left) and navigator-operator (right) in the cockpit of the MIG-31 interceptor




Jobs crews armored vehicles


At the moment, the jobs of the crew members are highly specialized - a separate driver's seat, individual jobs of the commander and gunner. Initially, this was due to the layout of armored vehicles, including a rotating tower and optical observation devices. All crew members had access only to their own controls and surveillance devices, not being able to perform the functions of another crew member.

A similar situation was previously observed in aviation, as an example, we can cite the workplaces of the pilot and navigator-operator of the MiG-31 fighter-interceptor or the Mi-28N combat helicopter. With this arrangement of the workspace, the death or wound of one of the crew members makes the fulfillment of the combat mission impossible, even the process of returning to the base itself became difficult.


Pilot positions (left) and navigator-operator (right) in the cockpit of the combat helicopter Mi-28H


Currently, developers are trying to unify crew jobs. This was largely due to the emergence of multifunctional displays, to which any necessary information can be displayed, from any intelligence equipment on board.

Unified pilot and navigator operator jobs were developed as part of the creation of a Boeing / Sikorsky RAH-66 Comanche reconnaissance and attack helicopter. In addition, the pilots of the RAH-66 helicopter should have been able to control most of the functions of the combat vehicle without taking their hands off the controls. In the RAH-66 helicopter, it was planned to install the Kaiser-Electronics helmet-mounted integrated sighting system capable of displaying an infrared (IR) and terrain television image from the front hemisphere viewing systems or a three-dimensional digital map of the terrain on the helmet display, implementing the "eyes outside the cockpit" principle. The presence of the helmet-mounted display allows you to fly a helicopter, and the weapon operator can search for targets without looking at the dashboard.


Boeing / Sikorsky RAH-66 Comanche reconnaissance helicopter cab


The RAH-66 helicopter program was closed, but there is no doubt that the achievements obtained during its implementation are used in other programs for the creation of advanced combat vehicles. In Russia, the unified workplaces of the pilot and navigator-operator are implemented in the Mi-28HM combat helicopter based on the experience gained in the creation of the Mi-28UB combat helicopter. Also for the Mi-28HM, a pilot's helmet is being developed with the image displayed on the face shield and our helmet target designation system, which we discussed in the previous article.

The appearance of helmets with the ability to display information, unmanned towers and remotely-controlled weapons modules (DUMV) will allow to unify workplaces in ground combat vehicles. With a high probability, the workplaces of all crew members, including the driver, can be unified in perspective. Modern control systems do not require a mechanical connection between controls and actuators, so a compact steering wheel or even a lateral low-speed control knob — a high-precision joystick — can be used to drive an armored car.


Lateral low-speed control knob in the cockpit of the F-22 and F-35 aircraft


According to unconfirmed reports, the possibility of using a joystick as a replacement for a steering wheel or control levers was considered since 2013 when developing a control system a tank T-90MS. Also, the Kurganets infantry fighting vehicle control panel (BMP) was allegedly made in the image of the Sony Playstation game console gamepad, but it has not been disclosed whether this remote control is designed to control the movement of the BMP, or only to control weapons.

Thus, for controlling the movement of prospective combat vehicles, an option using the side low-speed control knob can be considered, and if this option is found unacceptable, then the steering wheel retracts in an inactive state. By default, the controls of the movement of the combat vehicle must be active with the driver, but if necessary, any crew member should be able to replace him. The main rule in the design of control elements of combat vehicles should be the principle - “hands are always on the controls”.

The unified workplaces of the crew members should be located in an armored capsule, isolated from other compartments of the combat vehicle, as implemented in the Armata project.


The location of the crew in the project "Armata"


Chairs with a variable angle of inclination, fixed on the shock absorbers, should provide a reduction of the effects of vibrations and shaking when driving on rough terrain. In the future, active shock absorbers can be used to eliminate vibrations and shaking. The crew seats may be provided with ventilation integrated with multi-zone climate control.

It may seem that such requirements are redundant, since a tank is not a limousine, but a combat vehicle. But the reality is that the time of armies staffed by untrained recruits is irretrievably gone. The increasing complexity and cost of combat vehicles requires the involvement of their respective professionals, who need to provide a comfortable workplace. Taking into account the cost of armored vehicles, amounting to about five - ten million dollars per unit, the installation of equipment that increases the comfort of the crew will not greatly affect the total amount. In turn, normal working conditions will contribute to increasing the efficiency of the crew’s actions, which do not need to be distracted by domestic discomforts.

Orientation and Decision


One of the most difficult issues of automation is to ensure the effective interaction of man and technology. It is in this area that there can be significant delays in the NORD cycle (Observation, Orientation, Decision, Action) at the stages of "orientation" and "decision". To understand the situation (orientation) and make effective decisions (decision), information for the crew should be displayed in the most accessible and intuitive form. With the increase in computing power of hardware and the advent of software (software) using, among other things, information analysis technologies based on neural networks, some of the tasks of processing intelligence data previously performed by humans can be assigned to software and hardware systems.

For example, when attacking an ATGM, the on-board computer of the armored vehicle can independently analyze the image from the thermal imager and cameras operating in the ultraviolet (UV) range (rocket engine trace), data from the radar, and possibly from acoustic sensors, detect and capture the ATGM launch, select the necessary ammunition and notify the crew of this, after which, the destruction of the ATGM calculation can be made automatically, with one or two teams (reversal of weapons, shot).


The ultraviolet ultra-violet review system from the 101X Atoll complex of the Su-57 aircraft and the Microvista Intevac multispectral video camera with a visibility range of 150 — 1100 nm


The on-board electronics of prospective armored vehicles should be able to independently identify potential targets by their thermal, UV, optical and radar signatures, calculate the trajectory of the movement, rank the targets according to the degree of threat and display information on the screen or helmet in a convenient form. Insufficient or, on the contrary, redundant information may lead to delays in decision making or to the adoption of erroneous decisions at the stages of “orientation” and “decision”.


Hyperspectral IR Telops Hyperspectral IR Camera and High Sensitivity Ultraviolet sCMOS Prime BSI Camera



Detection of a fighter in camouflage in the UV range

An important help in the work of crews of armored vehicles can be mixing information from different sensors, and displayed on the same screen / layer. In other words, information from each surveillance tool placed on an armored vehicle should be used to form a single image that is as comfortable as possible for perception. For example, in the daytime, video from high-resolution color cameras is used as the basis for building the picture. The image from the thermal imager is used as an aid to highlight the warm-contrast elements. Also, additional elements of the image are displayed according to data from the radar or UV cameras. At night, the video image from night vision devices becomes the basis for building the image, which is accordingly complemented by information from other sensors.


Combination of the image received from various industrial sensors


Such technologies are currently used even in smartphones with several cameras, for example, when a black-and-white matrix with a higher photosensitivity is used to improve the quality of the image obtained by a color camera. Apply technology combining images and for industrial purposes. Of course, the ability to view images from each surveillance tool separately should remain as an option.

Under the action of armored vehicles in the group, the output of information can be carried out taking into account the data obtained by the sensors of the neighboring armored vehicles on the principle of "sees one - see everything." Information from all sensors placed on reconnaissance and combat units on the battlefield should be displayed on the upper level, processed and provided to the higher command in a form optimized for each particular level of decision-making, which will ensure highly efficient command and control.

It can be assumed that in advanced combat vehicles the cost of creating software will be a large part of the cost of developing the complex. And it is the software that will largely determine the advantages of one combat vehicle over another.

Training


Displaying images in digital form will allow for the training of armored vehicle crews without the use of specialized simulators, directly in the combat vehicle itself. Of course, such training will not replace full-fledged training with the shooting of real weapons, but it will still significantly simplify the training of crews. Training can be done individually, when the crew of the armored vehicle acts against AI (artificial intelligence - bots in a computer program), or by engaging a large number of different types of combat units within one virtual battlefield. In case of conducting military exercises, the real battlefield can be supplemented with virtual objects, using the augmented reality technology in armored software.

Ergonomics of workplaces and combat algorithms for promising armored vehicles

T-90 tank crew simulator



T-72 tank crew simulator


The immense popularity of online combat equipment simulators suggests that training software for advanced armored vehicles, adapted for use on conventional computers, can be used for preliminary training in the form of a game for potential future servicemen. Of course, such software must be amended to ensure the concealment of information constituting state and military secrets.

The use of simulators as a means of increasing the attractiveness of military service is gradually becoming a popular tool in the armed forces of the world. According to some reports, the U.S. Navy used a computer game-simulator of naval battles Harpoon to train officers fleet back at the end of the XNUMXth century. Since then, the possibilities of creating a realistic virtual space have grown many times, while the use of modern combat vehicles often becomes more and more like a computer game, especially when it comes to unmanned (remotely controlled) military equipment.

Conclusions


Crews of prospective armored vehicles will be able to make the right decisions in a complex, dynamically changing environment, and implement them at a significantly higher speed than is possible in existing combat vehicles. This will be facilitated by unified ergonomic workplaces of the crew and the use of intelligent systems for processing and displaying information. The use of armored vehicles as a simulator will save money on the development and procurement of specialized training tools, provide all crews with the opportunity to train at any time in a virtual combat space or during military exercises using augmented reality technology.

It can be assumed that the implementation of the above solutions in terms of improving situational awareness, optimizing the ergonomics of the crew cabs and using high-speed guidance drives will allow you to abandon one of the crew members without losing combat effectiveness, for example, you can combine the position of commander and gunner. However, the commander of the armored vehicle may be assigned some other promising tasks, which we will discuss in the next article.
31 comment
Information
Dear reader, to leave comments on the publication, you must sign in.
  1. +5
    21 June 2019 05: 53
    Yes, there is only one conclusion here - our creeping out of the Stone Age of modern microelectronics is our big problem! The country needs to URGENTLY create its MODERN microprocessor, which MASSY needs to produce in RUSSIA! Only after solving this problem will we be able to have more or less competitive night vision devices, navigation systems, homing missiles at the target, and much more. ..
    1. +1
      21 June 2019 06: 56
      Hmm ....

      In principle, progress on the face! I think the BA-64V would not even fit ......
      1. +1
        21 June 2019 13: 16
        Quote: Kote Pan Kokhanka
        Hmm ....

        In principle, progress on the face! I think the BA-64V would not even fit ......

        This is not like a BA-64, but some kind of BA-20
        1. 0
          21 June 2019 17: 04
          To be more precise, the FAI! "64" photo did not give it all away, but it is even smaller !!!
          Regards, Vlad!
    2. +1
      21 June 2019 07: 51
      Quote: Thrifty
      The country urgently needs to create its MODERN microprocessor, which

      The country needs to restore \ re-create the electronic INDUSTRY!
      They talked so much about it, they say .... and how much more WILL BE SPEAKED ???
      1. 0
        21 June 2019 12: 26
        If there were markets for these products - it would be worth creating. And so, all this is the next cut.
        1. -1
          21 June 2019 12: 36
          Any serious state, POWER, specifically engaged in its INDEPENDENT politics, economy, i.e. genuine sovereignty, CAN create, develop anything, everything you need ....
          Russia has EVERYTHING except .......
          1. +4
            21 June 2019 13: 07
            Well, we are not a power, but an ordinary raw materials appendage with a well-developed defense industry and atomic energy, as a legacy of the Soviet Union.
            1. -1
              21 June 2019 14: 08
              Country, power, it is the people!
              Rulers, regimes, this is temporary, peoples remain!
              We are from different nations .......
              1. +2
                21 June 2019 14: 21
                Yes you are kidding :-)
                1. 0
                  21 June 2019 14: 43
                  Quote: Malkavianin
                  Yes you are kidding :-)

                  No, I’m determined, I’ll put points over E.
        2. +1
          21 June 2019 14: 27
          Quote: Malkavianin
          If there would be markets for this product

          The market is more than adequate. Optoelectronic, radio engineering and cyber intelligence systems, by definition, have a dual purpose. They can be used not only as target designation systems for weapons, but also for the protection of objects, borders, institutions, and security on the streets and in transport. Even without access to foreign markets, the range of applications is simply enormous. The problem is that, in addition to common words and small projects on import substitution in individual industries, all these technologies develop depending on current needs. Unfortunately, there is no common policy in this area, no common standards, too many companies are engaged in duplication of work and the supply of imported components. Until half of the development resources are put in order in this chaos, they will be wasted, even without taking into account the corruption component.
          1. 0
            21 June 2019 14: 39
            Intelligence systems are generally piece goods, what can I say about him. Mass can only be in the civilian market segment. Or sell around the world. But this is not for us. We have eternal sanctions. But so that an ordinary layman could buy goods stuffed with domestic electronics, it is necessary to reduce the price of components so that it is lower than foreign ones. And here the problems begin. Why buy the goods, even if you own, but for 100 rubles, if you can buy the same over the hill, it is better for a ruble per pack. The only way out is to legally oblige to buy all commercial and state structures, as well as ordinary people, exclusively our products. :-)
  2. +1
    21 June 2019 07: 49
    It is clear that only professionals can control modern military equipment ..... studying, studying, studying, and for this, training equipment and systems need modern and much.
    1. 0
      22 June 2019 13: 02
      Well, actually, the tendency is to do "smart things" that can be controlled by not-so-outstanding people, of whom there are much more than outstanding ones.

      hi
      1. 0
        22 June 2019 21: 13
        We, people strive to make completely stupid, knowledge for the elite or nuggets. Is this the big news?
        Dead end, degradation!
        1. -1
          22 June 2019 21: 35
          See what happens to teens hooked on smartphones. This, for a minute, almost ALL teens ...

          They can become that very lost generation before the coming fall of our civilization.
          1. 0
            22 June 2019 21: 42
            There is a danger, you have to fight for your descendants, otherwise nothing.
            1. 0
              22 June 2019 21: 52
              I’m afraid it would be too late for this exam ...
              1. 0
                22 June 2019 23: 36
                Unified State Examination spoils a lot, but if you put your brains correctly and make them work, you can slip through!
  3. -3
    21 June 2019 08: 09
    As always - thoroughly.
    To the author plus.
  4. +4
    21 June 2019 10: 36
    Wow! The word "ergonomics" has finally sounded.
    1. +4
      21 June 2019 12: 29
      But I wonder why they minded Juris?
      The fact that ergonomic issues in the creation of automated control systems by troops and weapons are not in the first place, I experienced on myself. I have no doubt that with the rest of the equipment the same picture. It is clear that the amount of information displayed is growing with each new type of weapon and control means. So you need to look for other forms of its presentation, and not dump a bunch of text strings on the monitors, half of which is visible in only a few seconds!
      The reason is also clear - software and interface developers focus on spherical calculation in a vacuum, because the real combat work of the calculation is not even semi-abstract. Customer consultants are from the same category.
      So the dances with tambourines begin after setting the equipment on the database.
  5. +2
    21 June 2019 13: 20
    In general, tankers will be soft, dry and comfortable, and they will feel immersed in a computer game until the arrival of a cumulative jet in the carcass - right through the multifunction display lol
    1. +1
      21 June 2019 18: 56
      Quote: Narak-zempo
      In general, tankers will be soft, dry and comfortable, and they will feel immersed in a computer game until the arrival of a cumulative jet in the carcass - right through the multifunction display lol


      We get to the reservation hi
  6. -1
    21 June 2019 15: 58
    The author in the article described the reaction of the system to the firing of an ATGM ...
    this is probably possible, but as a programmer, I’ll say that no one probably represents the algorithm.
    why jump so far, can start searching, selecting, maintaining and classifying goals for the beginning
    and complete information exchange on the battlefield?
    I doubt that this problem is solved by more than 20%.
    1. 0
      21 June 2019 19: 00
      Quote: yehat
      The author in the article described the reaction of the system to the firing of an ATGM ...
      this is probably possible, but as a programmer, I’ll say that no one probably represents the algorithm.
      why jump so far, can start searching, selecting, maintaining and classifying goals for the beginning
      and complete information exchange on the battlefield?
      I doubt that this problem is solved by more than 20%.


      The exchange of information on the battlefield is carried out within the framework of the Sozvezdie concern, the only question is in what form.

      The described task of reacting to the shelling of an ATGM is quite realizable. In fact, it consists of two tasks:
      1. Detection of the flash of a shot and the rocket engine running, this has long been successfully done by aviation self-defense complexes.
      2. Tracking the trajectory of the ATGM to plot the coordinates of the launcher. This task is implemented in complexes of the "Zoo" type for detecting artillery positions along the projectile flight path.

      And the air defense systems and self-defense and counter -tillery complexes were already implemented several decades ago. Since then, the capabilities of computers and software have increased by orders of magnitude.
      1. 0
        2 July 2019 02: 04
        Quote: AVM
        Tracking the trajectory of the ATGM to plot the coordinates of the launcher. This task is realized in complexes like "Zoo"

        Well Duc Zoo analyzes ballistic targets. And ATGM can move unpredictably, especially corrected. The only UV. A system with a circular view may detect the start time.
  7. 0
    22 June 2019 00: 49
    I already talked about ergonomics. I repeat, for those who have not read it. A representative of a serious organization (annual military tests were completed in the air regiment, early 1980s) argued that this was not an anecdote. A certain aviation marshal (the person making responsible decisions - LPR) in the cockpit of a promising MiG-29, being practically in a lying state, did not find an RSS (aircraft control stick) among the displays. To the question "??? !!!" He is shown what is now widely known as the "joystick" (essno, side view). The decision maker "left" the cockpit and asked a direct question, are the pilot's eggs really on the side? Of course, he received a negative answer. Then the order followed: "So return the RUS to where the pilot has the eggs! And I will allow you to put the side handle when the eggs are on the side."
    In 1986, in the VVIA library in the Interavia magazine, in an article devoted to the visit of the "Cuban squadron" to the West for the first time to Finland, I read this review about the MiG-29: "a fourth generation aircraft with a second generation aircraft cockpit." Finland abandoned the MiG-29 and purchased the F-18.
    Here is such ergonomics of workplaces and combat algorithms.
    1. 0
      27 June 2019 09: 32
      That is, did the Finns already outgrow their eggs?
  8. -1
    24 June 2019 08: 52
    Quote: AVM
    1. Detection of the flash of a shot and the rocket engine running, this has long been successfully done by aviation self-defense complexes.
    2. Tracking the trajectory of the ATGM to plot the coordinates of the launcher. This task is implemented in complexes of the "Zoo" type for detecting artillery positions along the projectile flight path.

    it's all in theory works when an empty polygon and 1 point shoots
    and if the battlefield is saturated, then all these calculations can be lowered into the toilet.
    I repeat - the task is not too deterministic to be calmly solved by algorithms.