Military Review

The beginning of the path of walking robots

The beginning of the path of walking robots
According to the DRC rules (DARPA Robotics Challenge - practical tests of robotic systems under the auspices of the Office of Advanced Research Programs in the Field of Defense), robotic systems will have to work in the surrounding conditions created for people and use the most common tools.

At present, various robotized systems are being actively put into service, and, in addition, a new generation of systems is being formed that can pass where people can pass. However, much more needs to be done before they can be seen next to you in the theater.

Land and air unmanned systems are an important tool for modern military, their use has become the norm, not the exception. The conflicts in Iraq and Afghanistan led to their exponential growth, billions of dollars were spent on the development and purchase of such systems.

While systems like the Reaper UAV attract a lot of interest, the performance of their ground-based counterparts also deserves all praise. Due to the fact that improvised explosive devices (IEDs) pose the greatest threat to the forces deployed in Afghanistan, the “hardworking” automatic ground vehicles (AHA) have come to the fore. These systems are daily involved in so-called “stupid, dirty and dangerous” tasks, and in the performance of their duties, they often receive damage, sometimes “lethal”. Despite the huge amounts of money invested in robotic systems, their field of activity is still limited to the tasks of neutralizing explosive objects, which, based on operational needs, is completely justified. However, at present, the functionality of the ANA is beginning to expand, they are increasingly performing reconnaissance tasks, and even the tasks of logistics.

There are opportunities to expand the scope of application of robotic systems and not only in the military sector. Progress in robotic systems can lead to the creation of systems that are able to work together and interact with a person on a physical or social and cognitive level. For the most part, they will also be able to perform tasks for people or with them in an industrial environment, for example, in factories. Military ground robotic systems, having many potential tasks, could become the best friend of every soldier, for example, could wear his equipment, conduct advanced observation and even evacuate him from the battlefield. However, one big problem remains: current systems, despite their abundance, cannot pass where soldiers can pass. Many ANA have a high degree of mobility, but their wheeled and tracked configurations limit their use. In order for robots to become one hundred percent useful, they need to learn to walk. “Walking” should be the only type of locomotion (a set of coordinated movements through which the robot moves in space), or at least part of the capabilities of the hybrid design.

For the most part, investment in walking systems was minimal, powerful defense enterprises barely touched this area, and specialized companies, universities, and research institutes "run the ball". While these systems, for the most part, received little attention, the capabilities of robots that can work side by side with humans or instead of them have not gone unnoticed. And events such as the DRC (DARPA Robotics Challenge - practical tests of robotic systems under the program of the Office of Advanced Research and Development of the US Department of Defense) provide effective support for these technologies.

Walking robots have many advantages: they are well suited for rough terrain, can climb stairs, overcome ditches and work where wheels and tracks cannot. These are complex engineering tasks, and significant resources are needed to take advantage of robots in civil and military applications.

One of the first tasks that the military consider for walking systems is logistics. In Afghanistan, in particular, due to the unfavorable environmental conditions and the aggressive actions of the rebels, there can be significant mobility problems, which can adversely affect the traditional material and technical supplies provided by ground or air platforms. Deployed personnel also carry more and more heavy loads, as the amount of equipment that they use in the process of service is constantly and rapidly growing.

Legged Squad Support System

To this end, the Marine Corps and the US Army some time ago studied the possibility of converting small manned vehicles into automatic systems; The army with notable success has already experienced a support system for the SMSS (Squad Mission Support System) from Lockheed Martin in Afghanistan. However, the main concern is the inability of SMSS and other similar vehicles to move where soldiers and infantry can move, which they should assist. The soldiers' display in Afghanistan has become such a serious problem that mules were called to serve in order to support the troops serving in difficult terrain. But this approach is only a temporary measure.

To solve this problem, the Marines are currently working with DARPA on a legged Squad Support System (LS3) leg support system. The goal of this work is to combine mobility and logistic capabilities in a system that could move 400 pounds (181 kg) of equipment over a distance of more than 32 km without having to intervene for 24 hours, and could also maintain the pace with the unit to which it was attached.

The four-legged LS3 robot became the development of the BigDog system, which was also created by Boston Dynamics. The last field tests of the robot were conducted in December 2012 of the year in Virginia; The two-week work was carried out in collaboration with the Marine Corps fighting laboratory. The LS3 legs have hydraulic actuators with sensors for distributing the forces and positioning all the joints. The system can run and maintain balance on loose, slippery and uneven soil, as well as rise when it loses balance.

The LS3 robot has a high degree of mobility and can carry considerable loads on itself.

During the test, five system capabilities were demonstrated: 1) voice commands; 2) night operations; 3) “go” orders; 4) perception of the environment; 5) intellectual foot setting.

The LS3 Program Manager, Lt. Col. Joseph Heath, identified operational reliability and platform perception as the main tasks to be solved for this system. While the first is an engineering challenge, the second will require improving the cognitive capabilities of the system. This problem of robotics is not solved so easily, and it needs to pay a lot of attention.

If robotic systems, walking or of any other type, must work in a real situation, their awareness of the surrounding space in which they are deployed will be a key condition for their effectiveness.

The goal of the LS3 program is to operate the system without increasing the cognitive load on the infantrymen. To achieve this, cognitive load must be placed on the system itself.

“If you want the vehicle to be remotely controlled or simply follow the operator, I think the software is not a problem in this case. If you want it to move by itself and walk through the forest without personal control, then suddenly you find yourself at a completely different level of complexity, ”said Professor Gregory Dudek, director of the school of computer science and former director of the center of intelligent machines.

“We have a walking machine, he can study and remember what a given terrain is like, and therefore, if a robot encounters the same terrain again, it does not need much time to understand, he has already learned the properties of such a terrain. This is doable, but it can be difficult ... The ground environment is perhaps the most difficult: many obstacles, many variables and many interactions. And walking systems, because of their versatility, also have more different types of failure, they can stumble, fall, kick something, but they push the boundaries of what we can do. I think that walking systems are related to very complex devices, but, as already mentioned, the problem of walking mobility itself - where to put your foot - even in such a complex system as LS3, is solved quite well. "

Video of Legged Squad Support System’s walking support system (with my subtitles)

Professor Dudek believes that the main task is to provide systems with the ability to perceive at a distance: “For example, try to estimate at some distance, in advance, your ability to overcome a pile of construction debris before you step on it. I think there is still a lot of work to be done in this direction. The question is not only whether the robot can or cannot go somewhere, but how quickly it can; it will be important to have the ability to predict task performance in different scenarios. If you cannot predict the performance of your task, then it is very difficult to choose a sequence of actions. ”

In order to improve the process of perception of robots and allow them to act independently, it is important to empower them with learning abilities. Although sensors can provide situational and physical awareness, it is only through training that robots can learn how to best interact with their external environment.

“Non-cognitive robots are stupid because they make the same mistakes again and again,” said Professor Peter Jonker from the Institute of Robotics at the University of Delft, which specializes in engineering and robot / human interaction than in defense applications. Cognitive systems learn to recognize and obtain information about objects and their properties. Progress in the perception and training of the robot is partly due to the ability to create large reference tables, they are formed from cognitive dependencies between the input and output data; This was made possible by improving data processing and increasing the amount of memory on board the robots. “Even 10 or 15 years ago, we did not have such a huge memory ... and now we have gigabytes of memory, so we can store everything in reference tables and it works. Apparently, it looks like the work of the brain and the system of concepts and attitudes here are exactly the same, ”Jonker explained. In addition, an important role was played here and increase computing power.

The use of robots in the real world

DRC testing is at the forefront of the development of functional robots with applications in the real world, in this case assistance in disaster areas. They bring together issues of perception, mobility and utility, they are distinguished by several unique features associated with a person. One of them is the external conditions in which the robots must work. DARPA acknowledged that disasters and catastrophes occur mostly in an environment designed for human use, it is not messy and structured.

Currently, the tasks envisaged by these tests (competitions) include: driving a universal vehicle; movement under the course through a heap of stones; removal of debris from the doorway; opening the door and entering the building; climbing the ladder and then further moving around the building; using tools to pass through a concrete panel; detection and closing of the valve near the flow pipe; and replacing components, such as a water pump.

DARPA did not publicly provide information on the level of autonomy that robots should have, but voiced at the beginning of the competition that the tasks would be set in such a way as to emphasize the importance of autonomy of robots at the complex task level, for example, the robot would be given the command to open the door independently instead careful control. DARPA will also change the quality of communication channels during testing and gradually reduce it to see how robots will cope with their tasks in such conditions.

Professor Dudek said that the level of autonomy of robotic systems is always a controversial issue. “Talk about how much autonomy will be in these systems, I find empty. If you want them to work well initially and fit you, it’s not necessary that they be too autonomous ... Some technologies are well understood and work well, but I think it’s a bad idea to make them autonomous in the near future ... just because When a problem arises, the question is: who will take responsibility? ”

Virginia Tech Team Presents THOR's New Humanoid Robot at DRC

Video presentation of the THOR robot by the Virginia Tech team

Humanoid systems

Although the DRC project does not specify the configuration of the robots participating in it, several teams presented two-legged humanoid models. The same applies to government-provided systems.

The question of what form walking robots should take is hotly debated, while the answers obviously depend on the role of the system. Many ideas emerged regarding the use of humanoid models. “This is a controversial issue,” explained Dudek. According to him, “if you interview 10 robot specialists, you will get three or four different answers, and to some extent these answers are predictable, based on the geographical position of the person ... There is a clear separation between Japan and humanoid projects from Western Europe, the US and Canada. My own opinion is that the humanlike bipedal locomotion is not what we need right now. ”

Humanoid constructions have two key advantages: one of them is that their shape allows them to fit well for work in an environment created for people; the second is that people are more likely to accept humanoid robots. Dr. Heike Valleri, a biomechanical engineering specialist at Delft University, explained: “Kinematics and human controls developed together, an optimal model was found, including from an energy point of view ... Therefore, if we make robots with similar properties, then they will probably behave just like people. ”

Several teams competing in the DRC presented projects that deviate somewhat from the humanoid concept.

At the beginning of 2013, a team from the National Robotic Engineering Center at Carnegie Mellon University (CMU) announced the details of its member. The highly intelligent mobile platform of this university, created by a team called Tartan Rescue, received the designation CHIMP (CMU Highly Intelligent Mobile Platform). It is a human-sized robot that moves on rubber tracks built into each of its four limbs, rather than walking like a human.

The rationale for this approach to mobility is that driving on tracks offers greater speed and is simpler than developing a walking solution. If necessary, CHIMP can also move on the tracks of two limbs, for example, when it is necessary to use two other limbs to perform difficult and complex tasks.

According to Tartan Rescue team leader Tony Stents, the DRC tasks are likely to be “sharpened” for the characteristics of mobile humanoid robots, but in this case, the complexity, power consumption and more computing resources are required.

CHIMP is able to capture and control objects with its four manipulators at the end of each limb. He also has almost human strength and agility.

CHIMP uses onboard sensors to build 3D models of the surrounding world with textures that provide situational awareness and allow it to maintain balance. The same model is provided to the operator for visualizing the location and orientation of the robot.

The CHIMP robot has a hybrid design, in which the advantages of wheel locomotion (movement) are combined with the ability to climb stairs and manipulate objects.

The development team points to the controlled joints of the CHIMP robot, developed by the national robotic engineering center, as key elements that will allow you to perform various tasks within the DRC. For example, three joints in each limb allow the robot to have a humanlike grip. Other key features include the “receptive” head and hinge sensors, which provide feedback to the system and allow the robot to move, hold objects, collect garbage and construction waste in a safe way.

“Personally, I think this is the right direction,” said Professor Dudek and added: “I think with purely humanoid models it is very difficult to achieve efficiency in terms of cost and reliability, even though DARPA tests are in many ways designed to emphasize the need for a humanoid robot. The fact that you see people who are not seeking to create humanoid models for a competition that is intended as a humanoid competition speaks about something. I believe that no matter who wins the DARPA competition, it will have an impact on the development of robotics psychologically, even if not with the optimal design, since the answers to some of the questions will be given by the final results of this project. ”

Dr. Valleri believes that humanoid types of robots will not be widely used: “I do not think that anthropomorphic structures will be widely used, of course, with the exception of arms and legs; In the future, there will not be a lot of workable humanoid robots. ”

Works on biomimetic projects (imitation of biological creatures) are not limited to humanoid platforms. The Boston Dynamics company and the team from the biomimetic laboratory at the Massachusetts Institute of Technology are developing robots that are a further development of the Cheetah project ("Cheetah"). These systems have demonstrated the ability to run at a decent speed. The Boe Dynamics Dynamics Cheetah robot holds the world record for walking robots, reaching a maximum speed of 28,3 miles / hour (45,5 km / h). The next generation of Cheetah robots, called the Wildcat ("Wildcat"), will be able to work without a tethered cable. The first Wildcat trials have recently begun, and practical tests in the open air are scheduled to take place at the end of 2013. After all complex engineering problems are solved, systems of this type will find application in reconnaissance and search and rescue operations.

Cheetah walking robot holds world speed record for similar systems

Cheetah Robot Record Run Video

Many biomimetic systems have been developed, among them there are designs inspired by, among other things, cockroaches and stick insects. Some robots have the ability to climb walls; their multi-legged configurations allow for very high levels of mobility and stability.

A problem that Dudek believes may arise for cognitive systems is their certification for safe use, since their behavior and capabilities change in the learning process. Due to the stringent requirements imposed by the Pentagon, anotherоThe greatest difficulties will be experienced by the system for the military. "Military systems tend to push the limits of their autonomy, but at the same time the cost of failure increases."

Energy consumption is perhaps the biggest and most difficult task for designers of walking systems. Their complex designs with hydraulic and electric servos consume a large amount of energy, and current energy technologies cannot solve these needs. In the LS3 robot, this problem was solved through the use of a traditional internal combustion engine, but this is not suitable for all systems and requires a significant breakthrough in energy storage technology.

“We still have very big energy problems. We still have problems with transporting enough energy that would allow the systems to be quite efficient and truly autonomous, ”said Dr. Martin Wisse, specialist in walking systems at Delft University of Technology. Professor Dudek believes that the robotics industry can usefully take development from other areas to solve this problem: “I think that other industries will give a driving impetus, since the management of power supply for mobile devices is a huge problem in many areas, for example, in electric vehicles and portable electronic devices.

Robots can get benefits in other industries, not only in the energy sector. After all, sensory systems needed by robots are mostly developed elsewhere and mostly correspond to current requirements.

“I do not see sensory systems as an area where serious revolutionary research can come. I believe that getting high-performance laser rangefinder scanners, small and cheap, is a problem that needs a lot of work to solve. This should happen and much will be solved in the civilian sector, ”said Dudek, explaining that“ laser and lidar technologies (laser locators) have become extremely popular, the power of these devices has increased, but their use in walking systems is a headache. The cost of the system immediately rises, so it is very important to achieve a cheap, reliable lidar that would withstand shocks and shaking. ”

Available technology

Dr. Wisse noted the availability of a single sensor, assessing it as an important breakthrough: “3D vision is developing, and the considerable merit of this is Microsoft's Kinect sensor. The real market for it is much larger than the market of robotic systems, so there is no need to develop something similar in robotics. ”

Wisse recalled another development that came from software. He said that the open operating system for robots Robot Operating System allowed robotics to write code that can integrate sensors such as, for example, Kinect, with robots.

From a mechanical point of view, complex tasks seem to focus on reliability and reducing the mass of materials and components.

“I think the real problems in deploying such systems are somewhat prosaic, the question here is how to handle mechanical breakdowns and make the system reasonably reliable,” Dudek said. - Robotics especially need the reliability of their systems, especially walking robots. Walking systems will have large vibrations, so everything that you embed in these systems should be resistant to shaking ... therefore the requirements for power systems, batteries and other components are high. This is a big problem".

Robots of one American company demonstrate how functional modern systems can be. Dr. Wisse remarked: “Systems from Boston Dynamics cope with engineering problems well. We just need all the components to work smoothly and be reliable - this is a question of money and good design. ”

Dr. Valleri noted the importance of creating lightweight robots for general security. “There are many reasons to make robots easy; you need less energy and it is less dangerous. If you make a humanoid robot, most likely it will work alongside people. ” She believes that work is needed to improve the actuators and that they should be easier and more effective.

Dr. Wisse believes that there are obstacles not only in the form of large technical difficulties. The current approach to the development of robotic technology does not bring much benefit to the industry, and changes are needed in this regard. “I think that real development will be only if we find the scope and find a large group of users for our technology and sustainable business that pays for continuous development. I really think that we need to take a look at what we can use right now in order to improve people's lives ... I believe we should work in a step-by-step, step-by-step mode, we should do everything to create and use markets, and do not create technological roadmaps, where we will focus only on the development of technology. I do not think that the way forward is the creation of more advanced humanoid robots in a given period of time, I believe that robotized technology can become cheaper due to the widespread creation of mass markets. ”
Jane's IDR August 2013
Dear reader, to leave comments on the publication, you must sign in.
  1. Roman_Romanich
    Roman_Romanich 23 December 2013 10: 01
    Sarah Conor, where are you? )))
    1. I am
      I am 24 December 2013 08: 06
      Don’t ... let the old woman rest !!!!
      A couple of men with one crowbar or two shovels ...... and at the reception point color meta will be happy.
      1. Impact
        Impact 25 December 2013 15: 48
        Quote: I am
        A couple of men with one crowbar or two shovels ...... and at the reception point color meta will be happy.

        What is the truth?
        Well then, try to break such a thing with a crowbar.
        1. I am
          I am 28 December 2013 12: 29
          Easy enough. Motion Detection Sensors She doesn’t have cameras with all-round visibility either. It is enough to block either hydraulics by interruption or the drive wheel at the tracks. Well, then the system gives an error and an emergency stop occurs. All. Well, actually, the most important combat use of this crap is impossible in principle.
          A purely peaceful thing. Easily replaced by a conventional excavator. By the way, in Fukushima, the analogue of this crap worked for less than 30 minutes. So that !!!! You need to read, not watch ads.
      2. The comment was deleted.
  2. ed65b
    ed65b 23 December 2013 10: 02
    I can imagine how such a "donkey" will jump over the mountains laughing On a gas engine laughing Ideas, ideas, no, of course I don’t argue to develop, but it’s too early to speak about the application, let alone in the war. This thing is not a substitute for the usual donkey. he plucked the weed poop and threw it forward, he did his work, let go, and went home.
    1. bazilio
      bazilio 23 December 2013 10: 16
      I agree, at the moment, everything depends on portable energy sources with high capacity.
      1. Impact
        Impact 25 December 2013 15: 53
        Quote: bazilio
        I agree, at the moment, everything depends on portable energy sources with high capacity.

        Yeah, it’s like that.

        A new class of batteries of huge capacity has been opened.
        The highest density of stored energy per unit volume was given by an electrolyte based on vanadium diboride, showing absolutely fantastic 27 W • h per liter of volume, that is, in fact, more than a liter of gasoline, and "at times"!
        Sodium-ion batteries have set a record for capacity and durability.
        According to the developers, new batteries have up to 600 Wh per kilogram of weight, which is 2,5-6 times more than the serial lithium batteries on the market today.
        Scientists from the University of California Boulder handed over the next-generation battery technology to the commercial company Solid Power. The new battery does not have liquid electrolyte and is much safer than ordinary lithium-ion. Besides, the new battery in the ratio of capacity / weight is 3 times higher than Li-ion.
      2. The comment was deleted.
    2. The comment was deleted.
  3. ed65b
    ed65b 23 December 2013 11: 03
    How to deal with it laughing
  4. ed65b
    ed65b 23 December 2013 11: 04
    Robator au ????? laughing
  5. ed65b
    ed65b 23 December 2013 11: 06
    And even so. WWII Caucasus.
  6. hitech
    hitech 23 December 2013 11: 20
    It remains to put on armor, take a spear and a shield and sit on this "calf" laughing
  7. q_556
    q_556 23 December 2013 11: 26
    Death to all people! Glory to the Robots !!!
    1. Patton5
      Patton5 23 December 2013 12: 45
      Death to all people! Glory to the Robots !!!
  8. Armed
    Armed 23 December 2013 11: 26
    Quote: hitech
    It remains to put on armor, take a spear and a shield and sit on this "calf" laughing

    13: 45-18: 03
    1. Alexey Prikazchikov
      Alexey Prikazchikov 24 December 2013 07: 42
      After these videos, there is only one desire to cut out all Americans and Europeans to a single person, along with children and women.
      1. felix
        felix 27 December 2013 08: 46
    2. The comment was deleted.
  9. Hort
    Hort 23 December 2013 12: 52
    LS3 Robot
    our loved ones will be christened him a moose, if we suddenly have laughing

    but generally well done Darpovites, here without any. We are far from such studies, which is not good.
  10. Simple
    Simple 23 December 2013 14: 21
    No comments:
  11. JonnyT
    JonnyT 23 December 2013 16: 43
    Unfortunately, neither the market nor the production base are ready for this yet!
    1. Hort
      Hort 24 December 2013 06: 55
      as soon as they make a normal autonomous power source, they will go into series
  12. blizart
    blizart 23 December 2013 20: 32
    Very worried about the record holder
  13. iConst
    iConst 24 December 2013 00: 09
    Before the coming of the Terminator a little bit was left ...
    1. I am
      I am 24 December 2013 08: 20
      Well, someone like that, but those who study physics at school and know the principle of the gyroscope will always cope with this crap)))))) scrap-ax-saw-spare parts !!!! Well, or something like that. The advantage of these systems is both their vulnerability. They cannot be protected from directed EMP. At the slightest damage to the chassis - this toy becomes parts. if the control and navigation system is damaged (turn off gps and that's it !!!) the same thing. Interception of control. A mine trap with a non-lethal filling for a person in a good armored suit is fatal for this unit (gasoline, diesel fuel, alcohol, solvent, acid .....) and hydraulics, and just sandbags dumped from above and that's it. And how much power reserve on rough terrain without refueling (recharging) ???? And in winter, this unit will do what ??? I doused it with water and take a tepid one, in general a toy and hereinafter a toy. For Russia, it is not very dangerous, although not pleasant.
      1. Hort
        Hort 24 December 2013 11: 19
        On the whole, yes, there are a lot of ways to ruin such a skeleton: from magnetic mines and EMP to negative temperatures, when the grease stupidly freezes and the terminator rises in this stake.
        But on the other hand, if you dress this up in optical camouflage, hang it up with sensors and sensors, an anti-magnetic coating and use artificial muscle fiber instead of hydraulics (the same DARPA has been developing this for a long time), then it can spoil a lot of blood before it bangs
      2. Impact
        Impact 25 December 2013 16: 05
        Quote: I am
        Well, someone like that, but those who study physics at school and know the principle of the gyroscope will always cope with this crap)))))) scrap-ax-saw-spare parts !!!! Well, or something like that.

        You first using the "principle of the gyro" try to break an armored troop-carrier with a crowbar.

        Quote: I am
        The advantage of these systems is both their vulnerability.

        Here is more detailed ...

        Quote: I am
        They cannot be protected from directed EMP.

        True galleries ??? And how then protect other military equipment from EMP?

        Quote: I am
        At the slightest damage to the chassis - this toy becomes parts.

        And what will happen to a person if he steps on it? (mine "Dragon's Tooth")
        mine "Dragon's Tooth"

        Quote: I am
        if the control and navigation system is damaged (turn off gps and that's it !!!) the same thing.

        Do you not use drugs?

        How did the control system get damaged? Using an RPG?
        You may not know, but there are inertial navigation systems.
        Improved precision NMR can invert inertial navigation

        Quote: I am
        Interception of control.

        Nothing that robots are made autonomous, and not radio-controlled?
        Try to take control of the RQ-4 Global Hawk.

        Quote: I am
        A mine trap with non-lethal content for a person in a good armored suit is fatal for this unit (gasoline, diesel fuel, alcohol, solvent, acid .....) and hydraulics,

        I think you still use something forbidden.

        Quote: I am
        and just sandbags dumped on top and all.

        No comment ...

        Quote: I am
        And how much power reserve on rough terrain without refueling (recharging) ????

        And what is the power reserve of a person at one breakfast, without dry ration?

        Quote: I am
        And in winter, this unit will do what ???

        What do APCs do in winter?

        Quote: I am
        I doused it with water and take a tepid one, in general a toy and hereinafter a toy.

        URGENTLY contact a narcologist !!!
        1. I am
          I am 28 December 2013 12: 41
          Hm. There is no gyroscope in the APC. And if there was, it is enough to create conditions of unstable equilibrium. and scrap is suitable for this, then think for yourself.
          About EMR. Read articles about Fukushima. there, Amy did not smell, and yet the praised Japanese and Amer robots died of radiation. And do not compare heavy equipment and these toys. In TANKS electronics special execution. Of course, this can be done for robots as well, but on all that what was discussed in the article of protection against EMR, it’s not revealed, well, or I’ll show it in large detail. By the way, about vulnerability ...... three times hee hee. All hydraulics stick out and all the drives. wherever you stick and the machine ran back. About the interception. Nude Nude. Learned the basics of robotics ???? And how do these systems get coordinates where and from where to run? Or where do they get the vengeance map from? And where do they take reference currents ????? That's all to hammer the channel or slip their toys to the kurt of the Chernobyl nuclear power plant. And the example of IRAN with amer drones is not suitable?
          About the forbidden - did not try to think? The explosion of the barrel with the aforementioned liquid will gobble up the drive in 10-15 km. If at the same time it doesn’t get on the lenses of the video review system, and if it does, then immediately. You can spray acid from the battery onto the lenses of the camcorder and see what happens. About a bag with a stove for a dog-like robot - yes this is the finish line, or rather two bags and a rope between them, let's see how it will untie from them in the absence of manipulators, well, or a metal mesh.
          The course on rough terrain - the nurse - terminator was revised. KM. 50-100 and if there is nowhere to refuel, the aggregate got up. Solar panels do not channel. BTR in the winter. But nothing that the chassis of the armored personnel carrier is not hydraulically ????
          1. I am
            I am 28 December 2013 21: 38
            Sorry for the mistakes from the phone answered standing on one leg in the minibus))))
      3. The comment was deleted.