Laser weapons: navy. Part of 4

17
Laser setup experiments weapons on ships in the USSR were conducted from the 70-ies of the XX century.

In 1976, the terms of reference (TOR) for the conversion of the project 770 SDK-20 landing craft into the Foros experimental vessel (project 10030) with the Aquilon laser complex were approved. In 1984, the ship under the designation OS-90 "Foros" joined the Black Sea fleet USSR and at the Feodosia training ground, for the first time in stories Soviet Navy were conducted test shooting from the laser gun "Aquilon". The shooting was successful, the low-flying missile was promptly detected and destroyed by a laser beam.




Project 10030 "Foros" with a laser complex "Aquilon"


Subsequently, the Aquilon complex was installed on a small artillery ship built according to the modified 12081 project. The capacity of the complex was reduced, its purpose was to disable optical-electronic means and damage organs of sight to the personnel of the enemy antiamphibious defense.


Small artillery ship 12081 with a laser complex "Aquilon"


At the same time, the Aydar project on the creation of the most powerful shipborne laser system in the USSR was being worked out. In 1978, the Vostok-3 timber carrying vessel was converted into a carrier of laser weapons - the Dikson ship (project 05961). Three jet engines from the Tu-154 aircraft were installed on the ship as an energy source for the Aydar laser facility.

During the tests in 1980, a laser volley was given at a target located at a distance of 4 kilometers. The target was hit the first time, but no one was present at the same time as the beam and the visible destruction of the target. The hit was recorded by a heat sensor mounted on the target, the beam efficiency was 5%, and a presumably significant part of the beam energy was absorbed by evaporation of moisture from the sea surface.

In the United States, research aimed at creating combat laser weapons has also been carried out since the 70s of the last century, when the implementation of the ASMD program (Anti-Ship Missile Defense - protection against anti-ship missiles) began. Initially, work was carried out on gas-dynamic lasers, but then the focus shifted to chemical lasers.

At 1973, TRW began work on an experimental demonstration sample of a continuous-action fluoride-deuterium laser NACL (Navy ARPA Chemical Laser) with a power of about 100 kW. Research and development (R & D) on the NACL complex was conducted until the 1976 year.

In 1977, the US Department of Defense launched the Sea Light program, aimed at developing a high-energy laser machine, with a capacity of up to 2 MW. As a result, a MIRACL (Mid-IniaRed Advanced Chemical Laser) fluoride-deuterium chemical laser range facility was created, operating in a continuous mode of radiation generation, with a maximum output power of 2,2 MW at a wavelength of 3,8 μm, its first tests were carried out in September 1980 of the year.

In 1989, the White Sands test center conducted experiments using the MIRACL laser complex to intercept radio-controlled targets of the BQM-34 type, simulating the flight of anti-ship missiles (ASR) at subsonic speeds. Subsequently, supersonic (M = 2) Vandal missiles that mimic the anti-ship missile attack at low altitudes were intercepted. In tests conducted from 1991 to 1993 years, the developers clarified the criteria for the destruction of missiles of various classes, and also carried out a practical interception of unmanned aerial vehicles (UAVs), imitating the use of anti-ship missiles by the enemy.

Laser weapons: navy. Part of 4

Laser complex "MIRACL"


At the end of the 1990s, the use of a chemical laser as a ship weapon was abandoned due to the need to store and use toxic components. (most likely, also because of the total amount of work and maintenance of weapons of this type).

In the future, the US Navy and other NATO countries focused on lasers powered by electrical energy.

As part of the SSL-TM program, Raytheon created the LaWS (Laser Weapon System) demo laser system with a power of 33 kW. On tests in 2012, the LaWS complex, from the side of a destroyer (EM) "Dewey" (such as "Arleigh Burke"), was hit 12 targets BQM-I74A.

The LaWS complex is modular, the power is gained by summing the beams of lower-power solid-state infrared lasers. Lasers are located in a single massive case. Since 2014, the LaWS laser complex has been installed on the USS Ponce (LPD-15) USS to assess the effect of actual operating conditions on the performance and effectiveness of the gun. By 2017, the capacity of the complex should have been increased to 100 kW.


Laser complex LaWS



LaWS laser demonstration

Currently, several US companies, including Northrop Grumman, Boeing and Locheed Martin, are developing laser self-defense systems for ships based on solid-state and fiber lasers. To reduce the risks of the US Navy in parallel, it implements several programs aimed at obtaining laser weapons. Due to the change of names in the framework of the transfer of projects from one company to another, or the merging of projects, there may be intersections by names.

Northrop Grumman Corporation is working on a modular combat laser, designated MLD (Maritime Laser Demonstration). The initial power of the 15 laser kW, modular design allows you to get a total power up to 105 kW. In the future, the output power of the plant can be increased to 300-600 kW.

Boeing received a contract worth 29,5 million for the development of a laser beam control system that could provide precise guidance of the laser weapons of US Navy ships.

In 2019, the SNLWS program for installing a solid-state laser with a power of 60 kW and higher allocated 190 million dollars from the budget to destroyers of Arleigh Burke class URO. The equipment of three destroyers is envisaged, the Navy awaits the first destroyer equipped with a laser weapon at the end of the 2020 of the year.

Corporation Locheed Martin received a contract worth $ 150 million (with the possibility of increasing to $ 942,8 million) for the supply of the US Navy high-energy laser weapons HELIOS. Plans include testing aboard the Arly Burke destroyers in 2019-2020 (possibly as part of the SNLWS program).

There is also information about the 150 kilowatt laser weapon setup program at UDC of the San Antonio type and the RHEL (Ruggedized High Energy Laser) laser weapon program with a power from 150 kW.



The appearance of an experimental combat laser aboard an URO destroyer of the type “Arleigh Burke” is supposed to be in 2020


According to US media reports, the US Navy FFG (X) advanced frigate project includes a requirement for installing a combat laser with a power of 150 kW (or reserving a place to install), under the control of the combat system COMBATSS-21.


LaWS laser complex on the project of a promising frigate FFG (X) from Lockheed Martin


In addition to the United States, the former "mistress of the seas", the United Kingdom, is most interested in sea-based lasers. The absence of the laser industry does not allow to implement the project on its own, and in this connection, in 2016, the UK Ministry of Defense announced a tender for the development of the technology demonstrator LDEW (Laser Directed Energy Weapon), in which the German company MBDA Deutschland won. In 2017, the consortium introduced a full-size prototype of the LDEW laser.


LDEW Laser Prototype


Earlier in 2016, MBDA Deutschland introduced the Laser effector laser complex, which can be installed on land and sea carriers and is designed to destroy UAVs, missiles and mortar shells. The complex provides defense in the 360 degrees sector, has a minimal reaction time and is able to repel shots coming from different directions. The company reports that its laser has great potential for development.

“Recently, MBDA Deutschland has invested heavily from its budget to create laser technology. We have achieved significant results compared to other companies ",

- says the head of the company for sales and business development, Peter Heilmeyer.


Ship laser complex “Laser effector” by MBDA Deutschland


German companies are on the same level, and, perhaps, overtake the US companies in the laser arms race, and are quite capable of being the first to introduce not only laser complexes terrestrialbut also sea-based.

In France, the DCNS perspective Advansea project is being considered using full electric propulsion technology. The project “Advansea” is planned to be equipped with an 20 megawatt electricity generator capable of meeting the needs of advanced laser weapons.


French warship project with laser weapons “Advansea”


In Russia, according to media reports, laser weapons can be placed on the advanced Leader nuclear destroyer. On the one hand, the nuclear power plant suggests that there is enough power to supply laser weapons with power, on the other hand, this project is at the stage of preliminary design, and it is clearly premature to talk about something concrete.


The concept of the atomic destroyer "Leader"


Separately, it is necessary to single out the American project of a free electron laser - Free Electron Laser (FEL), developed in the interests of the US Navy. Laser weapons of this type have significant differences compared with other types of lasers.

Radiation in a free electron laser is generated by a monoenergetic electron beam moving in a periodic system of deflecting electric or magnetic fields. By changing the energy of the electron beam, as well as the strength of the magnetic field and the distance between the magnets, it is possible to change the frequency of the laser radiation over a wide range, receiving at the output radiation in the range from X-ray to microwave.


The principle of operation of a free electron laser


Free electron lasers are characterized by large dimensions, which makes them difficult to place on compact carriers. In this sense, large surface ships are the optimal carriers of lasers of this type.

Development of the FEL laser for the US Navy is the company Boeing. A prototype of the FEL laser with a power of 14 kW was demonstrated in the 2011 year. At the moment, the state of work on this laser is unknown, it was planned to gradually increase the radiation power up to 1 MW. The main difficulty is to create an electron injector of the required power.

Despite the fact that the dimensions of the FEL laser will exceed the dimensions of lasers of comparable power based on other technologies (solid-state, fiber), its ability to change the radiation frequency over a wide range will allow to choose the wavelength in accordance with weather conditions and the type of target affected. The appearance of FEL lasers of sufficient power is difficult to expect in the near future, rather it will happen after the 2030 year.

Compared to other types of armed forces, the deployment of laser weapons on warships has both its advantages and its disadvantages.

On existing ships, the power of laser armament, which can be installed at the retrofit entrance, is limited by the capabilities of electric generators. The newest and most promising ships are being developed on the basis of electric propulsion technologies, which will provide enough laser power.

On ships, there is much more space than on land and air carriers, respectively, there are no problems with the placement of large equipment. Finally, there are opportunities to provide effective cooling for laser equipment.

On the other hand, the ships are in a hostile environment - sea water, salt fog. High humidity above the sea will significantly reduce the power of laser radiation, if targets are hit above the surface of the water, and therefore the minimum power of a laser weapon suitable for placement on ships can be estimated at 100 kW.

For ships, the need to defeat “cheap” targets, such as mines and unguided missiles, is not so critical; such weapons can pose a limited threat only in the basing sites. It is also not to be considered as a justification for the placement of laser weapons, the threat posed by small vessels, although in some cases they can cause serious damage.


As a result of a terrorist attack on the US Navy's Cole destroyer Cole, carried out on 12 in October 2000 in the port of Yemen using a powerboat, 17 sailors were killed, dozens of others were injured, the ship received significantly less damage results, than, for example, Yandex)


Small-sized UAVs are a definite threat to ships, both as a means of reconnaissance and as a means of destroying vulnerable points of the ship, such as radar. The defeat of such UAVs with rocket-gun armament can be difficult, and in this case, the presence of laser defensive armament on board the ship will completely solve this problem.

Anti-ship missiles (anti-ship missiles), against which laser weapons can be used, can be divided into two subgroups:
- low-flying subsonic and supersonic anti-ship missiles;
- supersonic and hypersonic anti-ship missiles, attacking from above, including along the aeroballistic trajectory.

In the case of low-flying CRPs, the curvature of the earth’s surface, which limits the range of a direct shot, and the saturation of the lower atmosphere with water vapor, which reduces the power of the beam, will serve as an obstacle for laser weapons.

To increase the area of ​​destruction, the options for placing the radiating elements of a laser weapon on a superstructure are considered. The power of a laser suitable for hitting modern low-flying anti-ship missiles is likely to be from 300 kW.


In the conceptual design of the future “Dreadnought 2050” warship, the placement of laser weapons is assumed to be on board a UAV supplied with electricity via a cable from the carrier ship


The affected area of ​​anti-ship missiles attacking along the high-altitude trajectory will be limited only by the laser power and the capabilities of the guidance systems.

The most difficult goal will be hypersonic RCC, both because of the minimum time spent in the affected area, and because of the presence of regular thermal protection. However, the thermal protection is optimized for heating the RCC case during the flight, and the extra kilowatts will definitely not bring any benefit to the rocket.

The need for guaranteed destruction of hypersonic anti-ship missiles will require lasers with a power above 1 MW placed onboard the ship, the best solution would be a free electron laser. Also, laser weapons of such power can be used against low-orbit spacecraft.

From time to time, publications on military topics, including the Military Review, discuss information about the weak security of anti-ship missiles with a radar homing head (HLRG), against radio-electronic interference and masking curtains used from the ship. The solution to this problem is the use of a multispectral homing system, including television and thermal imaging channels. The presence on board a ship of a laser weapon, even a minimum power of the order of 100 kW, can offset the advantages of RCC with a multispectral homing system, due to the constant or temporary blinding of sensitive matrices.

In the United States, versions of acoustic laser guns are being developed that allow reproducing intense sound vibrations at a considerable distance from the radiation source. Perhaps based on these technologies, ship lasers can be used to create acoustic noise or decoys for sonars and enemy torpedoes.


Prototype Acoustic Laser Gun

Thus, it can be assumed that the appearance of laser weapons on warships will increase their stability in front of all types of attack weapons.

The main obstacle for placing laser weapons on ships is the lack of the necessary electrical power. In this regard, the emergence of truly effective laser weapons will most likely begin only with the commissioning of promising ships with full electric propulsion technology.

On the upgraded ships can be installed a limited number of lasers with a power of the order of 100-300 kW.

On submarines, the placement of laser weapons with a power of 300 kW or more with radiation output through the terminal device located on the periscope will allow the submarine to carry out defeat from the periscope depth aviation enemy anti-submarine weapons - anti-submarine defense aircraft and helicopters.

A further increase in the power of lasers, from 1 MW and higher, will make it possible to damage or completely destroy low-orbit spacecraft, according to external target designation. The advantages of placing such weapons on submarines: high secrecy and global reach of the carrier. The ability to travel in the World Ocean to an unlimited range will allow the submarine - the carrier of laser weapons to reach the point that is optimal for hitting a space satellite, taking into account its flight path. And the secrecy will make it more difficult for the enemy to make claims (well, the spacecraft went out of order, how to prove who shot it down if obviously armed forces were not present in this region).

In general, at the initial stage, the navy will feel less advantage from the introduction of laser weapons in comparison with other types of armed forces. However, in the future, with the continuous improvement of anti-ship missiles, laser complexes will become an integral part of the air defense / missile defense of surface ships, and, possibly, submarines.
17 comments
Information
Dear reader, to leave comments on the publication, you must sign in.
  1. -1
    23 March 2019 18: 59
    Strange, but for some reason nothing is said about the possibilities and prospects of creating a naval version of "Peresvet" in our country.
    1. 0
      23 March 2019 20: 13
      Probably because the parameters of "Peresvet" are not known even to the author - not the type of laser, nor the power, nor other characteristics. And we can assume and conjecture ourselves, if we want.
  2. 0
    23 March 2019 19: 01
    The need for guaranteed destruction of hypersonic anti-ship missiles will require lasers with a capacity exceeding 1 MW placed on board ship

    The main obstacle for placing laser weapons on ships is the lack of the necessary electrical power.

    Is it so difficult, on ships with a nuclear power plant, to provide a reserve for electrical power in 1 MW?
    1. 0
      23 March 2019 20: 28
      Quote: 1Alexey
      The need for guaranteed destruction of hypersonic anti-ship missiles will require lasers with a capacity exceeding 1 MW placed on board ship

      The main obstacle for placing laser weapons on ships is the lack of the necessary electrical power.

      Is it so difficult, on ships with a nuclear power plant, to provide a reserve for electrical power in 1 MW?


      Depending on the laser efficiency, it will be more likely 3-5 MW for 1 MW laser, but I think it is possible, if the ship is electromotive. But if the energy of the turbine or reactor goes straight to the screw (mechanical connection), then you need to know what kind of generators there are, and whether it is possible to install more powerful ones.
      1. 0
        23 March 2019 20: 32
        I meant new ships, such as, for example, the destroyer Leader. What prevents the development of laying the necessary power reserve in the reactor, turbine and generator?
        1. 0
          23 March 2019 21: 16
          Quote: 1Alexey
          I meant new ships, such as, for example, the destroyer Leader. What prevents the development of laying the necessary power reserve in the reactor, turbine and generator?


          It may be laid.
          1. 0
            24 March 2019 19: 30
            Zumvolt produces
            78 MW of energy.
            If there was a laser, there would be enough electricity.
  3. 0
    23 March 2019 21: 09
    The article deals with the effects of a laser mainly on air targets. And what are the prospects for using a laser on surface and ground targets, including people?

    Is it possible to eliminate with the help of a laser, for example, a duty shift of a ship or to disable the radar of a ship, at what range and how much power may be required for this?
    1. 0
      23 March 2019 21: 16
      Quote: 1Alexey
      The article deals with the effects of a laser mainly on air targets. And what are the prospects for using a laser on surface and ground targets, including people?

      Is it possible to eliminate with the help of a laser, for example, a duty shift of a ship or to disable the radar of a ship, at what range and how much power may be required for this?


      To do this, the ship or ground equipment must at least be in direct line of sight, I think that in modern conditions it is almost impossible.
      1. -1
        23 March 2019 21: 22
        And why not?
        Ships come to enemy shores, what prevents them from hitting a laser?
        For example, install a laser on the BDK?

        We install artillery on the ship.

        The question is, what range can such a laser have, for example, to strike people and what power will be required?
  4. +1
    24 March 2019 00: 30
    The author, again brings you ... The defeat of low-orbiting satellites?
    How? Is it magic?
    Lasers are even theoretically unable to inflict any damage on the satellite at such a distance. The same thing with a flashlight shone.
    1. 0
      24 March 2019 11: 51
      Quote: psiho117
      The author, again brings you ... The defeat of low-orbiting satellites?
      How? Is it magic?
      Lasers are even theoretically unable to inflict any damage on the satellite at such a distance. The same thing with a flashlight shone.


      Moscow. 5th of December. INTERFAX.RU - The Peresvet laser combat complex is capable of repelling any air attacks and fighting satellites in orbit, the Russian Defense Ministry said.

      "Peresvet" is capable of effectively counteracting any air attack and even fighting satellites in orbit, "the Russian Defense Ministry said in a publication.
  5. 0
    24 March 2019 21: 23
    I would like to know about the more distant prospects for the development of "laser" weapons. The ideas about the theory and perspectives presented in the first part looked naive and doubtful in some part. And among the practitioners they caused strong rejection in general. And they substantiated their professional doubts. Naturally, nothing in any way definite can be said about what and how will be in 50-100 years from now. The simplest thing is to extrapolate on a time scale from the achieved and planned near future, which will make it possible to more or less reasonably assume what can be expected beyond the horizon of plans. Information about radiation (light), UFO fields can become other sources of information about development opportunities! In addition, futurists and ... science fiction writers can be sources of information about the future. If you pay attention, lasers are practically absent in the works of modern science fiction writers. But there is a beam, plasma, gravitational weapon that can be considered a descendant of lasers. As history shows, even the wildest fantasies of writers tend to come true. Information has appeared about the creation of a quantum (anti-gravity) engine, which is supposedly 100 times more efficient than the existing ones.
  6. 0
    27 March 2019 14: 13
    US Navy begging for lasers and F-35 3 more billion dollars

    ... the fleet wants 80 millions of dollars to buy an extra onboard laser system HELIOS. If this is provided, it will be an addition to the existing one: it is planned to install its Navy on one of its ships at the end of this year. Such a decision is a clear signal that the navy wants to promote the program than was previously reported.

    In the coming years, HELIOS will become one of the main defensive systems on Arleigh Burke class destroyers, where it will be fully integrated into the ship’s combat system.

    Neither the Navy nor the Lockheed Martin contractor want to describe the laser characteristics in too much detail, but HELIOS radiates anywhere from 60 to 150 kilowatts, which makes it at least twice as powerful as the LAWS prototype with an 30 kW laser: it was installed onboard USS Ponce in 2014 year. The LAWS system was able to shoot down drones and burn small boats and blind sensors ...


    https://topwar.ru/156021-vms-ssha-vyprashivaet-dengi-3-milliarda-vdobavok-k-poluchennym-200-na-lazery-i-f-35.html
  7. 0
    9 May 2019 12: 36
    Another concept of the American frigate on the FFG (X) program from the American shipyard Bath Iron Works.

    In the photo there is an element that clearly resembles a laser ...
  8. The comment was deleted.
  9. 0
    9 August 2019 11: 57
    German corvettes plan to arm with laser weapons - https://topwar.ru/161081-nemeckie-korvety-planirujut-vooruzhit-lazernym-oruzhiem.html
  10. 0
    23 September 2019 07: 51
    Germany intends to become one of the countries with military lasers in service. Yesterday, on August 8, navaltoday.com announced that Rheinmetall and MBDA began joint development of a laser system for the German Navy ...

    https://warspot.ru/15280-braunshveygi-ispytayut-lazery